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Critical software

• Many systems must avoid a certain class of failures with high 
assurance

• safety critical systems
• failure could cause, death, injury or property damage

• security critical systems
• failure could allow leakage of confidential data, fraud, …

• real time systems
• software must accomplish certain tasks on time

• Critical systems have much in common with critical mechanical 
systems (bridges, brakes, locks,…)

• Key: engineers study how things fail



Tacoma Narrows, Nov 7 1940



Definitions I

• Error
• design flaw or deviation from intended state (a static quality)

• Failure
• non-performance of system (a dynamic quality). Classical definition 

says “under specified environmental conditions”. 

• Reliability
• probability of failure within a set period of time
• typically expressed as MTBF/MTTF: mean time between failures / to 

failure, depending whether system will be repaired and restarted

• Accident
• undesired, unplanned event resulting in specified kind/level of loss

• Near Miss (or Incident)
• event with the potential to be an accident, but no loss occurs



Definitions II

• Safety
• freedom from accidents

• Hazard
• set of conditions on system which in some environmental 

conditions, will lead to an accident
• hence: hazard + failure = accident

• Risk
• the probability of a bad outcome
• the probability that hazard leads to accident (danger), combined 

with the hazard exposure or duration (latency)

• Uncertainty
• risk not quantifiable



Arianne 5, June 4 1996

• Arianne 5 accelerated faster than Arianne 4

• This caused an operand error in float-to-integer conversion 

• The backup inertial navigation set dumped core

• The core was interpreted by the live set as flight data

• Full nozzle deflection → 20o angle of attack → booster 
separation

• $370 million of satellites destroyed



Real-time systems

• Many safety-critical systems are also real-time systems used in 
monitoring or control

• Criticality of timing makes many simple verification techniques 
inadequate

• Often, good design requires very extensive application domain 
expertise

• Exception handling tricky, as with Arianne

• Testing can also be really hard 



Patriot missile failure, Feb 25 1991

• Failed to intercept an Iraqi scud missile in First Gulf War

• SCUD struck US barracks in Dhahran; 29 dead

• Other SCUDs hit Saudi Arabia, Israel



Patriot missile failure

• Reason for failure
• measured time in 1/10 sec, truncated from .0001100110011…
• when system upgraded from air-defence to anti-ballistic-missile, 

accuracy increased
• but not everywhere in the (assembly language) code!
• modules got out of step by 1/3 sec after 100 hours operation
• so system looked for Scud 600 metres away from where it was
• since nothing visible at incorrect location, no launch occurred
• not found in testing as spec only called for 4h tests

• Critical system failures are typically multifactorial: “a reliable 
system can’t fail in a simple way”

• But classical definition of `failure’ said “under specified 
environmental conditions”... So was this a failure?



Security critical systems

• Usual approach – try to get 
high assurance of one aspect 
of protection

• Example: stop classified data 
flowing from ‘high’ to ‘low’ 
using one-way flow

• Assurance via simple 
mechanism

• Keeping this small and 
verifiable is often harder than 
it looks at first!



Building critical systems

• Some things go wrong at the detail level and can only be dealt 
with there (e.g. integer scaling)

• However in general safety (along with security and real-time 
performance) is a system property and has to be dealt with at 
the system level

• A very common error is not getting the scope right
• for example, designers don’t consider human factors such as 

usability and training



Hazard elimination

• e.g., motor reversing circuit above, in the left hand circuit 
failure of both switches to move together will short the battery

• Some tools can eliminate whole classes of software hazards, 
e.g. using a strongly-typed language such as Ada

• But usually hazards involve more than just software



The Therac accidents I

• The Therac-25 was a 
radiotherapy machine 
sold by AECL; 11 
machines shipped

• Between 1985 and 1987 
three people died in six 
accidents

• Example of a fatal coding 
error, compounded with 
usability problems and 
poor safety engineering



The Therac accidents II

• 25 MeV ‘therapeutic 
accelerator’ with two 
modes of operation:

1. 25MeV focussed electron 
beam on target to 
generate X-rays

2. 5-25 MeV spread electron 
beam for skin treatment 
(with 1% of beam 
current)

• Safety requirement
• don’t fire 100% beam at 

human!



The Therac accidents III

• Previous models (Therac 6 and 20) had mechanical interlocks to 
prevent high-intensity beam use unless X-ray target in place

• The Therac-25 replaced these with software

• Fault tree analysis arbitrarily assigned probability of 10-11 to 
‘computer selects wrong energy’

• Code was poorly written, unstructured and not really 
documented



The Therac accidents IV

• Marietta, GA, June 85: woman’s shoulder burnt.
• settled out of court. FDA not told.

• Hamilton, Ontario, July 85: woman’s hip burnt.
• AECL suspected a micro-switch error (reporting incorrect turntable 

positions) but could not reproduce fault; changed software anyway.

• Yakima, WA, Dec 85: woman’s hip burned
• “could not be a malfunction”

• East Texas Cancer Centre, Mar 86: man burned in neck
• died five months later of complications
• 3 weeks later: another man burned on face & died after 3 weeks

• Hospital physicist managed to reproduce flaw:
• if parameters changed too quickly from x-ray to electron beam, 

then the safety interlocks failed

• Yakima, WA, Jan 87: man burned in chest and died 
• different bug now thought to have caused Ontario accident



The Therac accidents V

• East Texas deaths caused by editing ‘beam type’ and then 
issuing a start treatment request very quickly thereafter

• This was due to poor software design



The Therac accidents VI

• Data entry routine sets 
turntable and ‘MEOS’ (the 
mode and energy level)

• When data entry complete 
(cursor on last line) machine 
starts configuration

• Part of this involves setting magnets into correct position 
(which takes 8 seconds, so a timer routine is called)

• The timer routine checks for cursor movement if it is being 
called whilst the magnets are being moved

• Unfortunately, it also cleared the “magnets moving” flag; so 
it didn’t check the cursor for subsequent magnet moves 



The Therac accidents VII

• AECL had ignored safety aspects of software
• initial investigations had looked for hardware faults

• Confused reliability with safety

• Lack of defensive design

• Inadequate reporting, follow-up and regulation – failed to 
explain Ontario accident at the time

• a true/false flag was being incremented to keep it true, and after 
255 increments it speciously got set to the wrong value!

• Unrealistic risk assessments (‘think of a number and double it’)

• Inadequate software engineering practices
• specification an afterthought, complex architecture, dangerous 

coding, little testing, careless HCI design, incomprehensible 
messages displayed to users, failure to follow up accident reports


