
Software Engineering

Computer Science Tripos 1B
Michaelmas 2011

Richard Clayton

Critical software

• Many systems must avoid a certain class of failures with high
assurance

• safety critical systems
• failure could cause, death, injury or property damage

• security critical systems
• failure could allow leakage of confidential data, fraud, …

• real time systems
• software must accomplish certain tasks on time

• Critical systems have much in common with critical mechanical
systems (bridges, brakes, locks,…)

• Key: engineers study how things fail

Tacoma Narrows, Nov 7 1940

Definitions I

• Error
• design flaw or deviation from intended state (a static quality)

• Failure
• non-performance of system (a dynamic quality). Classical definition

says “under specified environmental conditions”.

• Reliability
• probability of failure within a set period of time
• typically expressed as MTBF/MTTF: mean time between failures / to

failure, depending whether system will be repaired and restarted

• Accident
• undesired, unplanned event resulting in specified kind/level of loss

• Near Miss (or Incident)
• event with the potential to be an accident, but no loss occurs

Definitions II

• Safety
• freedom from accidents

• Hazard
• set of conditions on system which in some environmental

conditions, will lead to an accident
• hence: hazard + failure = accident

• Risk
• the probability of a bad outcome
• the probability that hazard leads to accident (danger), combined

with the hazard exposure or duration (latency)

• Uncertainty
• risk not quantifiable

Arianne 5, June 4 1996

• Arianne 5 accelerated faster than Arianne 4

• This caused an operand error in float-to-integer conversion

• The backup inertial navigation set dumped core

• The core was interpreted by the live set as flight data

• Full nozzle deflection → 20o angle of attack → booster
separation

• $370 million of satellites destroyed

Real-time systems

• Many safety-critical systems are also real-time systems used in
monitoring or control

• Criticality of timing makes many simple verification techniques
inadequate

• Often, good design requires very extensive application domain
expertise

• Exception handling tricky, as with Arianne

• Testing can also be really hard

Patriot missile failure, Feb 25 1991

• Failed to intercept an Iraqi scud missile in First Gulf War

• SCUD struck US barracks in Dhahran; 29 dead

• Other SCUDs hit Saudi Arabia, Israel

Patriot missile failure

• Reason for failure
• measured time in 1/10 sec, truncated from .0001100110011…
• when system upgraded from air-defence to anti-ballistic-missile,

accuracy increased
• but not everywhere in the (assembly language) code!
• modules got out of step by 1/3 sec after 100 hours operation
• so system looked for Scud 600 metres away from where it was
• since nothing visible at incorrect location, no launch occurred
• not found in testing as spec only called for 4h tests

• Critical system failures are typically multifactorial: “a reliable
system can’t fail in a simple way”

• But classical definition of `failure’ said “under specified
environmental conditions”... So was this a failure?

Security critical systems

• Usual approach – try to get
high assurance of one aspect
of protection

• Example: stop classified data
flowing from ‘high’ to ‘low’
using one-way flow

• Assurance via simple
mechanism

• Keeping this small and
verifiable is often harder than
it looks at first!

Building critical systems

• Some things go wrong at the detail level and can only be dealt
with there (e.g. integer scaling)

• However in general safety (along with security and real-time
performance) is a system property and has to be dealt with at
the system level

• A very common error is not getting the scope right
• for example, designers don’t consider human factors such as

usability and training

Hazard elimination

• e.g., motor reversing circuit above, in the left hand circuit
failure of both switches to move together will short the battery

• Some tools can eliminate whole classes of software hazards,
e.g. using a strongly-typed language such as Ada

• But usually hazards involve more than just software

The Therac accidents I

• The Therac-25 was a
radiotherapy machine
sold by AECL; 11
machines shipped

• Between 1985 and 1987
three people died in six
accidents

• Example of a fatal coding
error, compounded with
usability problems and
poor safety engineering

The Therac accidents II

• 25 MeV ‘therapeutic
accelerator’ with two
modes of operation:

1. 25MeV focussed electron
beam on target to
generate X-rays

2. 5-25 MeV spread electron
beam for skin treatment
(with 1% of beam
current)

• Safety requirement
• don’t fire 100% beam at

human!

The Therac accidents III

• Previous models (Therac 6 and 20) had mechanical interlocks to
prevent high-intensity beam use unless X-ray target in place

• The Therac-25 replaced these with software

• Fault tree analysis arbitrarily assigned probability of 10-11 to
‘computer selects wrong energy’

• Code was poorly written, unstructured and not really
documented

The Therac accidents IV

• Marietta, GA, June 85: woman’s shoulder burnt.
• settled out of court. FDA not told.

• Hamilton, Ontario, July 85: woman’s hip burnt.
• AECL suspected a micro-switch error (reporting incorrect turntable

positions) but could not reproduce fault; changed software anyway.

• Yakima, WA, Dec 85: woman’s hip burned
• “could not be a malfunction”

• East Texas Cancer Centre, Mar 86: man burned in neck
• died five months later of complications
• 3 weeks later: another man burned on face & died after 3 weeks

• Hospital physicist managed to reproduce flaw:
• if parameters changed too quickly from x-ray to electron beam,

then the safety interlocks failed

• Yakima, WA, Jan 87: man burned in chest and died
• different bug now thought to have caused Ontario accident

The Therac accidents V

• East Texas deaths caused by editing ‘beam type’ and then
issuing a start treatment request very quickly thereafter

• This was due to poor software design

The Therac accidents VI

• Data entry routine sets
turntable and ‘MEOS’ (the
mode and energy level)

• When data entry complete
(cursor on last line) machine
starts configuration

• Part of this involves setting magnets into correct position
(which takes 8 seconds, so a timer routine is called)

• The timer routine checks for cursor movement if it is being
called whilst the magnets are being moved

• Unfortunately, it also cleared the “magnets moving” flag; so
it didn’t check the cursor for subsequent magnet moves

The Therac accidents VII

• AECL had ignored safety aspects of software
• initial investigations had looked for hardware faults

• Confused reliability with safety

• Lack of defensive design

• Inadequate reporting, follow-up and regulation – failed to
explain Ontario accident at the time

• a true/false flag was being incremented to keep it true, and after
255 increments it speciously got set to the wrong value!

• Unrealistic risk assessments (‘think of a number and double it’)

• Inadequate software engineering practices
• specification an afterthought, complex architecture, dangerous

coding, little testing, careless HCI design, incomprehensible
messages displayed to users, failure to follow up accident reports

